III Semester M.Sc. Degree Examination, December 2014 (Semester Scheme) (NS)
 MATHEMATICS

M - 305 : Mathematical Methods

Time : 3 Hours
Max. Marks : 80

Abstract

Instructions: i) Solve any five questions choosing atleast two from each Part \boldsymbol{A} and Part B. ii) All questions carry equal marks.

PART-A

1. a) Explain the method of successive approximations to solve the volterra integral equation $y(x)=f(X)+\lambda \int_{a}^{x} K(x, t) y(t) d t$. Prove that its solution converges.
b) Transform the following into integral equation $y^{\prime \prime}-\lambda y(x)=f(x) ; x>0$, $y(0)=1, y^{\prime}(0)=0$; where λ is constant.
c) Solve the following integral equation $Q(x)-\int_{0}^{x}(x-s) Q(s) d s=0$, by successive approximation method.
2. a) Transform the differential equation $y^{\prime \prime}-K^{2} y(x)+\frac{e^{-x}}{x} y(x)=0 ; y(0)=0$; $y(\infty)=0$; into equivalent Fredholm integral equation.
b) Solve the integral equation $Q(x)-\lambda \int_{0}^{\pi} \cos (x+t) Q(t) d t=\cos 3 x$ by the method of separable or degenerate Kernel.
3. a) State and prove integral representation of a non-periodic function $f(x)$ over
$-\infty<\mathrm{X}<\infty$.

6
b) Solve the following BVP $u^{\prime \prime}-q u=50 e^{-2 x}(0<x<\infty) u(0)=u_{0} ; u(\infty)$ is bounded using Fourier sine transform.

5
c) Solve the following integral equation $Q(x)=\sin x+2 \int_{0}^{x} \cos (x-u) Q(u) d u$ using Laplace transform.

5
4. a) Reduce the following integral equation $Q(x)-\lambda \int_{0}^{\pi} K(x, t) Q(t) d t=0$; where $K(x, t)=\left\{\begin{array}{l}\cos x \sin t, 0 \leq x<t \\ \sin x \cos t, t \leq x \leq \pi\end{array}\right.$ to an equivalent boundary value problem and find its solution $Q(x)$.
b) Solve the initial value problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0$

$$
\begin{gathered}
u=f(x) \text { when } t=0,-\infty<x<\infty \text { Find } u(x, t) \text { when } f(x)=\left\{\begin{array}{l}
1 \text { for } x>0 \\
0 \text { for } x<0
\end{array}\right. \\
\text { PART -B }
\end{gathered}
$$

5. a) Define asymptotic expansion of a function as $x \rightarrow 0$ and as $x \rightarrow \infty$, integrate by parts to find asymptotic expansion of $\mathrm{I}(\mathrm{x})=\int_{\mathrm{x}}^{\infty} \mathrm{e}^{-\mathrm{t}^{2}} d t$ as $\mathrm{x} \rightarrow \infty$.
b) State and prove Watson's lemma.
c) Find the asymptotic approximate value of the following as $\mathrm{x} \rightarrow \infty$.
i) $I(x)=\int_{-\pi / 2}^{\pi / 2}(t+2) e^{-x \cos t} d t$
ii) $J_{x}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin t-x t) d t$.
6. a) Find a two term regular perturbation solution of the following:
i) $y^{\prime \prime}+y=\in\left(y^{\prime}-\frac{1}{3}\left(y^{\prime}\right)^{3}\right) ; y(0)=a ; y^{\prime}(0)=0$.
ii) $y^{\prime \prime}+(1-\in x) y=0 ; y(0)=1 ; y^{\prime}(0)=0$.
b) Apply the Poincare - Lindstedt method to find two term approximate periodic solution of $u^{\prime \prime}+u+\in u^{3}=0 ; u(0)=a ; u^{\prime}(0)=0$.
c) Find a two term approximate solution for small \in of the problem $y^{\prime \prime}=\in(\sin x) y$; $y(0)=1 ; y^{\prime}(0)=1$.
7. a) Find a 1-term uniformly valid solution of the singular perturbation problem $\in y^{\prime \prime}+y^{\prime}+y=0 ; y(0)=\alpha, y(1)=\beta$.
b) Apply the boundary layer theory to find a1-term perturbation solution of $\in y^{\prime \prime}+x^{2} y^{\prime}-y=0 ; y(0)=y(1)=1$.
8. a) Obtain the WKB 1-term approximate solution of $\epsilon^{2} y^{\prime \prime}=Q(x) y$.
b) Solve any two of the following non-linear differential equations
i) $y y^{\prime \prime}+a\left(y^{2}+1\right)=0$;
ii) $x^{2} y y^{\prime \prime}+\left(x y^{\prime}-y\right)^{2}-3 y^{2}=0 ;\left(\right.$ Hint : $\left.y^{\prime} / y^{\prime}=u\right)$.
